Computational studies on the Li-B12N12 as potential adsorbent for aniline from environment

Document Type : Original Article


Department of Chemistry, School of Basic Science, Jundi-Shapur University of Technology, Dezful, Iran


Aniline (C6H5NH2) is an important organic compound due to its wide applications in the manufacturing of dyestuffs, rubbers, pesticides, plastics and paints. Aniline is released throughout the environment by industrial wastewater and/or through degradation of some of the above mentioned compounds. Adsorption of aniline molecule on the surface of Li-encapsulated B12N12 nanocage is scrutinized using at Density functional theory (DFT) calculations to investigating its potential as chemical adsorbent. DFT calculations at the B3LYP /6-31G*level were performed in terms of energetic, geometric, and electronic properties. People had shown that piristin nanocages are weak absorbents. In order to improve the properties of the nanocage adsorbent, Li encapsulating process was investigated. The obtained results show that encapsulating process changes electrical properties of B12N12 dramatically. It was found that aniline is more likely adsorbed via its nitrogen atom on the Li-B12N12 surface. The adsorption energy of aniline on the nanocage in the most stable state is -45.06 kcal/mol and about 0.38|e| is transferred from the aniline molecule to the nanocage. It is expected that Li-encapsulated B12N12 acts as new potential nanosensor for toxic aniline molecules from environmental systems.


[1] W. Chu, W.K. Choy, T.Y. So, 2007. “The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline’. J. Hazard. Mater. , 141, 86–91.
[2] C. Karunakaran, S. Senthilvelan, 2005. “Solar photocatalysis: oxidation of aniline on CdS’ . Sol. Energy, 79, 505–512.
[3] A. Kumar, N. Mathur, 2006. “ Photocatalytic degradation of aniline at the interface of TiO2 suspensions containing carbonate ions”. J. Colloid Interface Sci., 300, 244–252.
[4] Y. Han, X. Quan, S. Chen, H. Zhao, C. Cui, Y. Zhao, 2006. “ Electrochemically enhanced adsorption of aniline on activated carbon fibers”. Sep. Purif. Technol., 50, 365-372.
[5] F. Villacanas, M.F.R. Pereira, J.J.M. Órfão, J.L. Figueiredo, 2006. “Adsorption of simple aromatic compounds on activated carbons”. J. Colloid Interface Sci., 293,128-136.
[6] K. László, 2005. “Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry”. Colloid Surf. A, 265,32-39.
[7] N. Jagtap, V. Ramaswamy, 2006. “Oxidation of aniline over titania pillared montmorillonite clays”. Appl. Clay Sci.,33, 89-98.
[8] H.T. Gomes, P. Selvam, S.E. Dapurkar, J.L. Figueiredo, J.L. Faria, 2005. “ Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline”. Microporous Mesoporous Mater., 86, 287– 294.
[9] L. Wang, S. Barrington, J. Kim, 2007. “Biodegradation of pentyl amine and aniline from petrochemical wastewater”. J. Environ. Manage.,83, 191-197.
[10] W.M. Zhang, Q.J. Zhang, B.C. Pan, L. Lv, B.J. Pan, Z.W. Xu, Q.X. Zhang, X.S. Zhao,
[11] W. Du, Q.R. Zhang, 2006. “Modeling synergistic adsorption of phenol/aniline mixtures in the aqueous phase onto porous polymer adsorbents”. J. Colloid Interface Sci., 306,216-221.
[12] Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.;Smalley, R. E., C60: buckminsterfullerene. Nature, 1985, 318, 162-163.
[13] Jensen, F.; Toftlund, H., Structure and stability of C24 and B12N12 isomers. Chem. Phys. Lett., 1993, 201, 89,96
[14] Wu, H. -S.; Jiao, H., What is the most stable B24N24 fullerene? Chem. Phys. Lett., 2004, 386, 369-372.
[15] Wu, H. -S.; Cui, X. -Y.; Qin, X. -F.; Jiao, H,.Structure and stability of boron nitrides: the B28N28 isomers. J. Mol. Struct: THEOCHEM, 2005, 714,155-153
[16] Wu, H. -S.; Cui, X. -Y.; Xu, X. -H., Structure and stability of boron nitrides: isomer of B32N32. J. Mol Struct: THEOCHEM, 2005, 717, 107-109.
[17] Golberg, D.; Rode, A.; Bando, Y.; Mitome, M; Gamaly, E.; Luther-Davies, B., Boron nitride nanostructures formed by ultra-high-repetition rate laser ablation. Diam. Relat. Mater., 2003, 12, 1269-1274.
[18] Oku, T.; Narita, I.; Nishiwaki, A., Synthesis, atomic structures, and electronic states of boron nitride nanocage clusters and nanotubes. Mater. Manuf.Processes, 2004, 19, 1215-1239.
[19] Seifert, G.; Fowler, P.; Mitchell, D.; Porezag, D;. Frauenheim, T., Boron-nitrogen analogues of the fullerenes: electronic and structural properties. Chem.Phys. Lett., 1997, 268, 352-358
[20] Oku, T.; Kuno, M.; Kitahara, H.; Narita, I,. Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Int. J. Inorg. Mater., 2001, 3, 597-612.
[21] Baei, M.; Mohammadian, H.; Hashemian, S., B12N12 nanocage as a potential adsorbent for the removal of aniline from environmental systems. Bulg. Chem. Commun., 2014, 46, 735-742.
[22] Baei M. T., Remove of toxic pyridine from environmental systems by using B12N12 nano-cage.Superlattices Microstruct, 2013, 58, 31-37.
[23] Baei, M. T., Adsorption of the urea molecule on the B12N12 nanocage. Turk. J. Chem, 2014, 38, 531-537.
[24] Shakerzadeh, E., A DFT study on the formaldehyde (H2CO and (H2CO)2) monitoring using pristine B12N12 nanocluster. Phsica E., 2016, 78, 1-9.
[25] Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Peyghan, A. A., B12N12 nano-cage as potential sensor for NO2 detection. Chin. J. Chem. Phys., 2012, 25, 60-64,
[26] Peyghan, A. A.; Soleymanabadi, H., Computational study on ammonia adsorption on the X12Y12 nanoclusters (X = B, Al and Y = N, P). Curr. Sci., 2015,108.
[27] Soltani, A.; Javan, M. B., Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-clusters: a theoretical study. RSC Advances, 2015, 5, 90621-90631.
[28] Soltani, A.; Baei, M. T.; Mirarab, M.; Sheikhi, M.Lemeski, E. T., The electronic and structural properties of BN and BP nano-cages interacting with OCN-: A DFT study. J. Phys. Chem. Solids, 2014, 75, 1099-1105.
[29] Soltani, A.; Baei, M. T.; Lemeski, E. T.; Pahlevani, A. A., The study of SCN- adsorption on B12N12 and B16N16 nano-cages. Superlattices Microstruc, 2014, ,724-716 ,75.
[30] Esrafili, M. D.; Nurazar, R., A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage. Superlattices Microstruct, 2014, 67, 54-60.
[31] Esrafili, M. D.; Nurazar, R., Methylamine adsorption and decomposition on B12N12 nanocage: A density functional theory study. Surf. Sci., 2014, 626, 44-48.
[32] Bahrami, A.; Seidi, S.; Baheri, T.; Aghamohammadi, M., A first-principles study on the adsorption behavior of amphetamine on pristine, P-and Al-doped B12N12 nano-cages. Superlattices Microstruc, 2013, 64, 265-273.
[33] Soltani, A.; Baei, M. T.; Lemeski, E. T.; Shahini, M,.Sensitivity of BN nano-cages to caffeine and nicotine molecules. Superlattices Microstruc, 2014, 76, 315-325.
[34] Baei, M. T.; Taghartapeh, M. R.; Lemeski, E. T.;Soltani, A., A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nanocages. Physica B: Condens Matter., 2014, 444, 6-13.
[35] Solimannejad, M.; Kamalinahad, S.; Shakerzadeh, E., Sensing performance of Sc-doped B12N12 nanocage for detecting toxic cyanogen gas: A computational study. Phys. Chem. Res., 2016, 4, 315-332.