Highly efficient diastereoselective synthesis of novel spiro-furan derivatives catalyzed by MgO supported on periodic mesoporous organosilica based on ionic liquid

Document Type : Original Article

Authors

Department of Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

Abstract

The synthesis of novel Spiro-furan derivatives via a three-component reaction of 1,3-dicarbonyl compounds, N-phenacyl pyridinium salts and accenaphthoquione. This reaction in the present of MgO nanoparticles on ionic liquid based periodic mesoporous organosilica (MgO@PMO- IL) were achieved in high efficiency with a simple work-up procedure and short reaction time, and the catalyst can be also recovered on efficiency reused in seven subsequent reaction conditions.

Keywords


[1] Padwa, A., Dimitroff, M., Waterson, A. G., & Wu, T. (1997). Diels− Alder reaction of 2-amino-substituted furans as a method for preparing substituted Anilines. The Journal of Organic Chemistry, 62(12), 4088-4096.
[2] Kappe, C. O., Murphree, S. S., & Padwa, A. (1997). Synthetic applications of furan Diels-Alder chemistry. Tetrahedron, 53(42), 14179-14233.
[3] Hofnung, M., Quillardet, P., Michel, V., & Touati, E. (2002). Genotoxicity of 2-nitro-7-methoxy-naphtho [2, 1-b] furan (R7000): a case study with some considerations on nitrofurantoin and nifuroxazide. Research in microbiology, 153(7), 427-434.
[4] Kobayashi, J. I., Ohizumi, Y., Nakamura, H., & Hirata, Y. (1986). Hippospongin, a novel furanosesterterpene possessing antispasmodic activity from the okinawan marine sponge hippospongia sp. Tetrahedron letters, 27(19), 2113-2116.
 
[5] Malladi, S., Nadh, R. V., Babu, K. S., & Babu, P. S. (2017). Synthesis and antibacterial activity studies of 2, 4-di substituted furan derivatives. Beni-Suef University journal of basic and applied sciences, 6(4), 345-353.
[6] Güzel, E., Şaki, N., Akın, M., Nebioğlu, M., Şişman, İ., Erdoğmuş, A., & Koçak, M. B. (2018).
[7] Zinc and chloroindium complexes of furan-2-ylmethoxy substituted phthalocyanines: Preparation and investigation of aggregation, singlet oxygen generation, antioxidant and antimicrobial properties. Synthetic Metals, 245, 127-134.
[8] Zeni, G., Lüdtke, D. S., Nogueira, C. W., Panatieri, R. B., Braga, A. L., Silveira, C. C., ... & Rocha, J. B. (2001). New acetylenic furan derivatives: synthesis and anti-inflammatory activity. Tetrahedron Letters, 42(51), 8927-8930.
[9] Yang, Y., & Wong, H. N. (1994). Regiospecific synthesis of 3, 4-disubstituted furans and 3-substituted furans using 3, 4-Bis (tri-n-butylstannyl) furan and 3-(tri-n-butylstannyl) f. Tetrahedron, 50(32), 9583-9608.
[10] Gabriele, B., Salerno, G., & Lauria, E. (1999). A general and facile synthesis of substituted furans by palladium-catalyzed cycloisomerization of (Z)-2-en-4-yn-1-ols. The Journal of Organic
[11] Moss, G. P. (1999). Extension and revision of the nomenclature for spiro compounds. Pure and applied chemistry, 71(3), 531-558.
[12] Müller, T. J. (2011). Multicomponent reactions.
[13] Baharfar, R., Asghari, S., Zaheri, F., & Shariati, N. (2017). Three-component synthesis of novel spirooxindole–furan derivatives using pyridinium salts. Comptes Rendus Chimie, 20(4), 359-364.
[14] Zhang, D., Johnson, S., Cui, H. L., & Tanaka, F. (2014). Synthesis of Furanose Spirooxindoles via 1, 8‐Diazabicyclo [5.4. 0] undec‐7‐ene (DBU)‐Catalyzed Aldol Reactions of a Pyruvic Aldehyde Derivative. Asian Journal of Organic Chemistry, 3(4), 391-394.
[15] Mohadesi, M., Aghel, B., Maleki, M., & Ansari, A. (2019). Production of biodiesel from waste cooking oil using a homogeneous catalyst: Study of semi-industrial pilot of microreactor. Renewable Energy, 136, 677-682.
 
[16] Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872.
[17] Elhamifar, D., & Shabani, A. (2014). Manganese‐containing periodic mesoporous organosilica with ionic‐liquid framework (Mn@ PMO‐IL): a powerful, durable, and reusable nanocatalyst for the biginelli reaction. Chemistry–A European Journal, 20(11), 3212-3217.
[18] Karimi, B., Rostami, F. B., Khorasani, M., Elhamifar, D., & Vali, H. (2014). Selective oxidation of alcohols with hydrogen peroxide catalyzed by tungstate ions (WO4=) supported on periodic mesoporous organosilica with imidazolium frameworks (PMO-IL). Tetrahedron, 70(36), 6114-6119.
[19] Baharfar, R., Zareyee, D., & Allahgholipour, S. L. (2019). Synthesis and characterization of MgO nanoparticles supported on ionic liquid‐based periodic mesoporous organosilica (MgO@ PMO‐IL) as a highly efficient and reusable nanocatalyst for the synthesis of novel spirooxindole‐furan derivatives. Applied Organometallic Chemistry, 33(4), e4805.
[20] Rostamnia, S., Doustkhah, E., Bulgar, R., & Zeynizadeh, B. (2016). Supported palladium ions inside periodic mesoporous organosilica with ionic liquid framework (Pd@ IL-PMO) as an efficient green catalyst for S-arylation coupling. Microporous and Mesoporous Materials, 225, 272-279.