A simple synthesis of imidazole derivatives under microwave conditions in the presence of MgO nanoparticles supported on periodic mesoporous organosilica based on ionic liquids

Document Type : Original Article


1 Department of Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar, Iran

2 Department of Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran


A simple synthesis of imidazole derivatives has been prepared through multi-component reaction of 1,2-dicarbonyl compounds, various aldehydes and ammonium acetate in the presence of a highly efficient and reusable nanocatalyst (MgO@PMO-IL) in the solvent-free and microwave reaction conditions. The products were isolated in high yields by simple work-up procedure in short reaction time.


[1] Clarke, M. L. (2001). Recent advances in homogeneous catalysis using platinum complexes. Polyhedron, 20(3-4), 151-164.
[2] Brunel, D., Bellocq, N., Sutra, P., Cauvel, A., Laspéras, M., Moreau, P., ... & Fajula, F. (1998). Transition-metal ligands bound onto the micelle-templated silica surface. Coordination chemistry reviews, 178, 1085-1108.
[3] Liu, J. F., Jiang, G. B., Chi, Y. G., Cai, Y. Q., Zhou, Q. X., & Hu, J. T. (2003). Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Analytical Chemistry, 75(21), 5870-5876.
[4] Armstrong, D. W., He, L., & Liu, Y. S. (1999). Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Analytical chemistry, 71(17), 3873-3876.
[5] Zarnegar, Z., & Safari, J. (2016). Heterogenization of an imidazolium ionic liquid based on magnetic carbon nanotubes as a novel organocatalyst for the synthesis of 2-amino-chromenes via a microwave-assisted multicomponent strategy. New Journal of Chemistry, 40(9), 7986-7995.
[6] Ullah, K. I., Nadeem, A. M., & Onur, S. A. H. I. N. (2013). Facile Synthesis and Crystal Stuructures of New Ammonium Sulfonates (CA-DNBS and TEA-TMBS). 结构化, 32(10), 1465-1474.
[7] Ranu, B. C., Banerjee, S., & Jana, R. (2007). Ionic liquid as catalyst and solvent: the remarkable effect of a basic ionic liquid,[bmIm] OH on Michael addition and alkylation of active methylene compounds. Tetrahedron, 63(3), 776-782.
[8] Demir, S., Damarhan, Y., & Özdemir, İ. (2015). Functionalized ionic liquids based on imidazolium cation: Synthesis, characterization and catalytic activity for N-alkylation reaction. Journal of Molecular Liquids, 204, 210-215.
[9] Safari, J., & Zarnegar, Z. (2014). Ultrasound mediation for one-pot multi-component synthesis of amidoalkyl naphthols using new magnetic nanoparticles modified by ionic liquids. Ultrasonics sonochemistry, 21(3), 1132-1139.
[10] Elhamifar, D., Khanmohammadi, H., & Elhamifar, D. (2017). Nickel containing ionic liquid based ordered nanoporous organosilica: a powerful and recoverable catalyst for synthesis of polyhydroquinolines. RSC advances, 7(86), 54789-54796.
[11] Karimi, B., Elhamifar, D., Clark, J. H., & Hunt, A. J. (2010). Ordered Mesoporous Organosilica with Ionic‐Liquid Framework: An Efficient and Reusable Support for the Palladium‐Catalyzed Suzuki–Miyaura Coupling Reaction in Water. Chemistry–A European Journal, 16(27), 8047-8053.
[12] B. Karimi, D. Elhamifar, J. H. Clark, A. J. Hunt, Chem. Eur. J. 2010, 16, 8047 – 8053; b) B. Karimi, Elhamifar, J. H. Clark, A. J. Hunt, Org. Biomol. Chem. 2011, 9, 7420 – 7426; c) B. Karimi, D. Elhamifar, O. Yari, M. Khorasani, H. Vali, J. H. Clark, A. J. Hunt, Chem. Eur. J. 2012, 18, 13520 – 13530; d) D. Elhamifar, B. Karimi, J. Rastegar, M. H. Banakar, ChemCatChem 2013, 5, 2418 – 2424.
[13] Elhamifar, D., Karimi, B., Rastegar, J., & Banakar, M. H. (2013). Palladium‐Containing Ionic Liquid‐ Based Ordered Mesoporous Organosilica: An Efficient and Reusable Catalyst for the Heck Reaction. ChemCatChem, 5(8), 2418-2424.
[14] Baharfar, R., Zareyee, D., & Allahgholipour, S. L. (2019). Synthesis and characterization of MgO nanoparticles supported on ionic liquid‐based periodic mesoporous organosilica (MgO@ PMO‐IL) as a highly efficient and reusable nanocatalyst for the synthesis of novel spirooxindole‐furan derivatives. Applied Organometallic Chemistry, 33(4), e4805.
[15] Goudarziafshar, H., Moosavi-Zare, A. R., & Jalilian, Z. (2020). Synthesis of 2, 4, 5-Tri substituted Imidazoles Using Nano-[Zn-2BSMP] Cl2 as a Schiff Base Complex and Catalyst. Organic Chemistry Research, 6(1), 69-81.
[16] Doman, T. N., McGovern, S. L., Witherbee, B. J., Kasten, T. P., Kurumbail, R., Stallings, W. C., ... & Shoichet, B. K. (2002). Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. Journal of medicinal chemistry, 45(11), 2213-2221.
[17] Wu, J. Y. C., Fong, W. F., Zhang, J. X., Leung, C. H., Kwong, H. L., Yang, M. S., ... & Cheung, H. (2003). Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. European journal of pharmacology, 473(1), 9-17.
[18] Thangamani, A. (2010). Regiospecific synthesis and biological evaluation of spirooxindolopyrrolizidines via [3+ 2] cycloaddition of azomethine ylide. European journal of medicinal chemistry, 45(12), 6120-6126.
[19] Khabnadideh, S., Rezaei, Z., Motazedian, M. H., & Eskandari, M. (2007). Synthesis of metronidazole derivatives as antigiardiasis agents. DARU Journal of Pharmaceutical Sciences, 15(1), 17-20.
[20] Takla, F. N., Farahat, A. A., Magda, A. A., & Nasr, M. N. (2017). Molecular Modeling and Synthesis of New Heterocyclic Compounds Containing Pyrazole as Anticancer Drugs. International Journal of Organic Chemistry, 7(4), 369-388.
[21] Khan, M. S. Y., Dhar, N., & Husain, A. (2012). Indole derivatives with anticonvulsant activity against two seizure models. Pharmacophore, 3(1), 55-61.
[22] Shaabani, A., & Rahmati, A. (2006). Silica sulfuric acid as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. Journal of Molecular Catalysis A: Chemical, 249(1-2), 246-248.
[23] Sangshetti, J. N., Kokare, N. D., Kotharkara, S. A., & Shinde, D. B. (2008). Ceric ammonium nitrate catalysed three component one-pot efficient synthesis of 2, 4, 5-triaryl-1H-imidazoles. Journal of chemical sciences, 120(5), 463-467.
[24] Damavandi, S., & Sandaroos, R. (2016). l-Proline-catalyzed three-component synthesis of condensed imidazoles. Arabian Journal of Chemistry, 9, S1138-S1143.
[25] Kantevari, S., Vuppalapati, S. V., Biradar, D. O., & Nagarapu, L. (2007). Highly efficient, one-pot, solvent-free synthesis of tetrasubstituted imidazoles using HClO4–SiO2 as novel heterogeneous catalyst. Journal of Molecular Catalysis A: Chemical, 266(1-2), 109-113.
[26] Aziizi, N., Manochehri, Z., Nahayi, A., & Torkashvand, S. (2014). A facile one-pot synthesis of tetrasubstituted imidazoles catalyzed by eutectic mixture stabilized ferrofluid. Journal of Molecular Liquids, 196, 153-158.
[27] Cotterill, I. C., Usyatinsky, A. Y., Arnold, J. M., Clark, D. S., Dordick, J. S., Michels, P. C., & Khmelnitsky, Y. L. (1998). Microwave assisted combinatorial chemistry synthesis of substituted pyridines. Tetrahedron letters, 39(10), 1117-1120.
[28] Allahgholipour, S. L., & Baharfar, R. (2020). Synthesis, characterization, and application of zinc supported on ionic liquid‐based periodic mesoporous organosilica (Zn@ PMO-IL) in A 3-coupling reaction for the synthesis of propargylamines. Monatshefte für Chemie-Chemical Monthly, 151(6), 991-997.
[29] Peiman, S., Baharfar, R., & Maleki, B. (2020). Immobilization of trypsin onto polyamidoamine dendrimer functionalized iron oxide nanoparticles and its catalytic behavior towards spirooxindole-pyran derivatives in aqueous media. Materials Today Communications, 101759.
[30] Kavyani, S., & Baharfar, R. (2020). Design and characterization of Fe3O4/GO/Au‐Ag nanocomposite as an efficient catalyst for the green synthesis of spirooxindole‐dihydropyridines. Applied Organometallic Chemistry, 34(4), e5560.
[31] Fallah, N. S., & Mokhtary, M. (2015). Tin oxide nanoparticles (SnO2-NPs): An efficient catalyst for the one-pot synthesis of highly substituted imidazole derivatives. Journal of Taibah University for Science, 9(4), 531-537